
SADAAM: Software Agent Development An

Agile Methodology

Neil Clynch1 and Rem Collier1

School of Computer Science and Informatics, University College Dublin, Ireland

Abstract. This paper presents SADAAM, an agent development method-
ology that utilises agile techniques to facilitate the development and im-
plementation of multi-agent systems. We illustrate SADAAM through a
worked example from the Supply Chain Management domain, and im-
plement a partial system using the Agent Factory Framework.

1 Introduction

Agile Development [1] [2] methods are currently being successfully employed
across organisations of all sizes, and are increasingly becoming integral to enter-
prise, mainstream deployments within industry. Agile approaches typically focus
on delivering working software in small increments, providing minimal documen-
tation, and minimizing risk by developing software in shorter time iterations that
contain every task required to successfully release a small increment of additional
functionality. Generally, agile methods provide benefits in an environment where
requirements are evolving and changing quickly; but are widely considered un-
suitable for larger projects, and projects that necessitate critical, reliable and
strict safety requirements.1

The last decade has witnessed an emergence of numerous Agent-Oriented
Software Engineering (AOSE) [22] [21] methodologies [8] [27] [29] based on an
assortment of conceptual frameworks, notions, techniques, and methodological
steps. Although many of these methodologies typically employ more traditional
approaches to development, in the context of agent-based systems, we believe it
can (in some cases) be too excessive because the complexity of current industrial
strength applications necessitates a more resource-intensive approach. Subse-
quently, there is an urgent requirement to provide a more efficient methodology
for the development of software agent systems. Since the complex interaction
scenarios and emerging behaviours between agents make pre-planning very dif-
ficult, agile practices appear to be a better choice than conventional engineering
approaches for multi-agent system (MAS) development. By combining AOSE
and agile techniques, it is possible to inject greater flexibility into the develop-
ment cycle; thereby promoting an iterative, incremental, test driven approach
to MAS development.

1 [9] offer a risk analysis approach based on criteria that they label ’home-ground’ for
each end of an adaptive-predictive continuum, to help determine the risk of using
either an agile or plan-driven method.

Addressing this issue provides a key motivation for the work presented here,
namely the formualation of SADAAM, an agile methodology, based loosely on
Agent UML [5], that supports the development of multi-agent systems. Specif-
ically, section 2 outlines other existing approaches to agile agent development.
Following this, section 3 presents details of SADAAM together with a worked
example that is adapted from the Supply Chain Management domain. Finally,
section 4 presents some concluding remarks.

2 Related Work

Agent-oriented methodologies can be categorized in terms of how software engi-
neering paradigms influenced their evolution [18]. The majority of these method-
ologies primarily focus on design and analysis [4] [26] and to some extent imple-
mentation.

Tropos [10] provides an exception to this trait by handling the entire soft-
ware development process; MaSE [28] attempts to facilitate a more complete
development cycle, providing support from initial system specification through
verification and implementation of the agent system; and MAS-CommonKADS
[20] does define some explicit verification process based on model checking that
is intended to support inter-agent communication [13]. Further, all of these ap-
proaches support implementation through the provision of varying levels of tool
support. However, work that includes testing of MAS is limited [11].

More recently there are signs of a growth of interest in the potential of using
agile methodologies for the development of agent-based systems. For instance,
[23] presents an extreme programming approach that was successfully applied
for the development of a prototypical MAS for clinical information logistics. Ad-
ditionally, [12] introduces Agile PASSI, an agile process that aims to provide a
more versatile approach to the development of agents for robotic applications.
Lack of maturity, insufficient testing methods, and lack of support were identified
as some of the main disadvantages of these approaches. In particular, because
they are still in their infancy and thus somewhat limited, they fail to fully em-
brace the concept of agile development, and eschew important factors such as
providing sufficient support for testing and documentation.

[13] presents a unit-testing approach toward MAS development, which allows
agents to be tested individually through the use of ”Mock Agents” that direct
the design and implementation of agent unit test cases. Each Mock Agent is
responsible for testing a single role of an agent under successful and exceptional
scenarios. Aspect-oriented techniques are employed to manage the asynchronous
execution of agents under test. One of the main drawbacks of this approach is
that each Mock Agent is responsible for testing just one role of an agent. This
”Role-Driven Unit Testing” limits the testing and development process, because
in reality, an agent may adopt a number of roles (e.g. Agent Neil may adopt
the role of Developer, Student, Husband, Father, etc). Additionally, each Mock
Agent represents a single unit test on a given scenario, and reports a single test
result. Thus, a large number of Mock Agents may need to be created when testing

agents that reside in more complex domains, rendering it inefficient, mainly
because a significant amount of time and effort is expended designing and coding
Mock Agents that are deemed redundant once the specific testing is complete.
Furthermore, this approach appears to be limited to a single agent platform; and
it fails to allow testing on deployed (live) applications. Finally, application code
needs to be recompiled resulting in significant compliation overhead.

3 Methodology

SADAAM is an agent development methodology that utilises techniques derived
from a variety of Agile Development methods including some of those found in
the Agile Manifesto [2], Agile Modelling [3], SCRUM [25], Extreme Programming
(XP) [6], Test-Driven Development (TDD) [7] and Refactoring [17] to facilitate
the development and implementation of software agents into MAS. Central to

Release &
Review

Test-Driven
Implementation Design

Agent Development Process

Refactor & Enhancement

Integrated Development Process

Finish of
Project

Require-
ments

Specificati
on

Fig. 1. Agent Development Process (ADP).

SADAAM is the Agent Development Process (ADP), which provides the core ag-
ile agent development process. The ADP implements an Integrated Development
Process (IDP) that consists of four key phases: Design, Test-Driven Implemen-
tation, Release and Review, and Refactor and Enhancement, that are applied
iteratively until a finished state is reached (Figure 1 presents a single iteration
through the ADP). The ADP supports a bottom-up approach that increases
flexibility and enables the development team to focus on the rapid delivery of
working code, and to respond quickly to changes in requirements. SADAAM also
includes some provision for requirements specification2, and project completion
(space constraints prevent a more detailed review here).

3.1 Design Phase

The Design phase for provides an incremental, iterative process for the analy-
sis and design of autonomous agents (as illustrated in figure 2). Its purpose is
to translate system requirements into design decisions. In particular, it defines
and documents details of the business scenario design solution. Specifically, it

2 SADAAM adopts a minimal approach to requirements capture, acknowledging that
upfront specification typically leads to a large amount of wastage (approx. 64% [3]).

identifies system behaviours and the roles performed by associated agents whilst
engaging in these system behaviours; it defines agents, their relationships, in-
teractions, and activities; and defines agent classes and methods that form the
solution. These attributes are realized via a minimal set of design artifacts that
are based on Agent-UML3

Create /
Refactor System

Behaviour
Model

Select System
Behaviour(s)

Expand / Define
Interaction
Diagrams

Expand / Refine
Activity

Diagrams

PEP 2

PEP1

Step 1

Step 2

Step 3

Step 4

PEP
4

PEP
3

PEP = Possible Entry Point

IDP: Design Phase

Fig. 2. IDP: Design Phase.

At the project level, SADAAM applies an adaptation of the Agile Model
Driven Development process [3]) to our Design Phase (see figure 3a). Significant
features of this model include: Scope and Requirements Analysis, Initial Re-
quirements Modeling, Expand on Initial Models, and SADAAM Model Storming
sessions, prior to implementation via the TDI phase.

Scope and Requirements Analysis helps determine the projects requirements;
and includes an agile approach to Requirements Management that employs tech-
niques such as implementation of requirements with highest priority first, flex-
ibility in the management of new or removed requirements and priorities, and
efficient allocation of resources to meet requirement tasks.

The Model Initial Requirements phase remains more of a high-level definition
of the scope and requirements analysis, intended to help clarify any ambiguities
in the requirements specification and provide the basis for dividing implemen-
tation into manageable steps. The level of detail should be simple enough to
provide a high-level understanding of the system. The first session should estab-
lish enough knowledge to compose an initial System Behaviour Model (SBM)
that provides enough information for the team to understand what the system
does, how its entities are defined, and interaction between these entities. More
detailed requirements are elicited through the expansion of this model.

SADAAM Model Storming Sessions call for the minimum amount of upfront
modelling effort to turn requirements into models that can be implemented in
a single iteration. These sessions will take place whenever a requirement model
needs to be looked at in greater detail, and may involve re-assessing the require-
ments estimate, and refinement of the initial diagrams.

3 SADAAM inherited these concepts from an earlier methodology [15] which employed
Agent-UML as its modeling language.

Expanding on the initial models involves depicting the system behaviours in
more detail. SADAAM’s approach to Requirements Modelling (Figure 3b) em-
ploys the SBM to help identify entities involved in the system, and how partic-
ipants operate in the system; and requires development of Organisational Unit
and System Behaviour diagrams that identify the systems basic entities and
relationships between them. The SBM is expanded via the Interaction and Ac-
tivity models. Further refinement (of the models) and allocation of resources are
performed as necessary. Finally, Review and Enhancement provides a further
opportunity review and enhance the models.

This approach enables the development team to work iteratively through the
design process, delivering working models in small increments; and it supports
the rapid development and delivery of working code for release and review. This
approach provides a number of benefits. In particular, it offers design flexibility,
streamlines the development effort, and allows the development team to accom-
modate changes in requirements efficiently.

Scope &
Requirements

Analysis

SADAAM
Model Storming

Session

Initial
Requirements

Modeling

Expand on Initial
Models

Implementation
via TDI phase

Cycle 1: Requirements Modeling

Cycle 2: Requirements Modeling

Cycle n: Requirements Modeling

Design Phase

Review &
Enhancement

Requirement

Develop SBM
based on

requirements

Expand on
SBM with

Interaction and
Activity Models

Further refine
model and

allocate
resources

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

SADAAM's Agile Driven Development Model approach

Requirements Modeling

Figure 3a Figure 3b

Fig. 3. Sample of the ADDM techniques applied in SADAAM to handle requests.

The principal design steps are as follows:

1. Create/Refactor System Behaviour Model. The System Behaviour
Model (SBM) identifies key system behaviours for the given scenario. Sys-
tem behaviour is a clear set of activities and/or interactions that occur at
some stage in the system operation [16]; and is represented as modified UML
Use Case diagrams, where actors are stereotyped as agents, and use cases
are stereotyped as system behaviours. SADAAM also applies the notion of
organisational structure that underlies each given (business) scenario. Specif-
ically, the SBM consists of an Organisational Unit Diagram (OUD) that out-
lines the organisational structure for the target system; and a set of System
Behaviour Diagrams (SBDs’) that outline the key system behaviours.
Organisational structure is defined by breaking down the (business) scenario
into an organisational hierarchy type model. Specifically, the OUD defines

organisations as Root Organisations, and sub-organisations as Organisational
Units based on the business functions; and is responsible for the assignment
of agents to specific organisational units (OUs). The OUD may also act as
a roadmap to drive the creation of corresponding SBDs’.
Development of the OUD is a 3-step process that defines both agents and
OUs in the scenario. This process is explained briefly via a worked example
taken from the Supply Chain domain4:

(a) Review of system requirements and business scenario: In this example,
the Retailer procures goods from the Supplier, which are subsequently
delivered via an independent Haulage Firm. The scenario begins with the
Retailer’s Buyer requesting a quote for goods from the Supplier. Once
the quote is received back from the Supplier, the Retailer Buyer places
an order for goods. The Supplier’s Warehouse Manager then contacts the
Haulage Firm’s Transport Manager to request their Services. Finally, the
Haulage Firm collects the goods from the Supplier and delivers them to
the Retailer’s Inventory Department.

(b) Define Organisation Structure and OUs in the environment you are at-
tempting to model: The OUD views our scenario as a structured envi-
ronment where 3 individual OUs operate within clearly defined bound-
ries, and cooperate systematically to conduct a transaction. Figure 4
formalises this view with an OUD that defines the following OUs: Re-
tailer(complete with sub-organisational units Purchasing and Inventory);
Supplier (comprising of Inventory and Sales sub-oranisational units); and
Haulage Firm; that each reside under the Supply Chain Scenario root.

(c) Assign Agents within the Organisational Structure: This step associates
agents to specific OUs, allowing the clear identification of agents re-
quired in the given scenario. In our example, a Buyer agent is assigned
to the Retailer.Purchasing OU and a WarehouseManager agent to the
Retailer.Inventory OU. Similar assignments are made for the Retailer
and Haulage Firm OUs (as illustrated in figure 4a) 5.

Although SBDs’ are adaptations of UML use case diagrams; unlike [16],
SADAAM associates a SBD with each unit of the OUD, allowing each
SBD to identify all system behaviours undertaken by agents that are part
of that particular unit or one of its sub-units. Where a unit is itself com-
prised of sub-units, the SBD shows only inter-sub unit system behaviours
(intra-sub unit behaviours are specified in the SBD for that sub-unit). This
helps to reduce the complexity of the SBM, and allows designers to focus
on inter-organisational unit behaviours seperately from intra-organisational
unit behaviours. Dotted lines are introduced to the SBD to clarify the sub-
organisational boundaries relevant to that unit.

4 Please note: this supply chain scenario has been simplified for demontration purposes
and is not meant to represent a complete system

5 Because organisational hierarchies are somewhat constrained by their commercial
environment, the OU model expects that agents will fall into a definitive organisa-
tional structure.

0: Scenario: Supply Chain

Buyer Seller

1.1: Supplier 1.3: Retailer

1.1.2
Sales

1.1.1
Inventory

1.3.2
Inventory

1.3.1
Purchasing

1.2: Haulage
Firm

…
Warehouse

Manager

Warehouse
Manager

Hauler Transport
Manager

Assign to
Delivery

Complete
Delivery

1. Obtain Quote
Seller

2. Place Order

Buyer

Supplier
Retailer

Warehouse
Manager

Hauler

5. Deliver
Goods

4. Collect
Goods

Warehouse
Manager

Haulage Firm
Transport
Manager

3. Request
Delivery

System Behaviour Diagram: Level 0 System Behaviour Diagram: Level 1.2 Organisational Unit Diagram: Level 1.2

Figure 3c SBD Level 1.2. Figure 3b SBD Level 0 Figure 3a OUD Level 1.2

Figure 4 a OUD Level 1.2

Figure 4 b SBD Level 0 Figure 4c SBD Level 1.2

Fig. 4. Supply Chain Scenario: System Behaviour Model Level 0 and level 1.2.

Figure 4b presents an SBD for the overall Supply Chain scenario. This di-
agram identifies a number of key system behaviours related to the procure-
ment process that are realised by agents associated with various sub-units of
the scenario. For example, the Supplier.Seller agent and the Retailer.Buyer
agents engage in two key behaviours: obtaining a quote, and placing an or-
der. The value of introducing the OUD is illustrated by figure 4c, which
shows the SBD for the Haulage Firm sub-unit. This diagram presents only
those system behaviours that are internal to that unit - all external system
behaviours are specified in SBDs that relate to higher-level OUs.

2. Select System Behaviours. The second step involves selection of a sub-set
of the overall system behaviours for further analysis. This step is essentially
a scoping operation that identifies which parts of the system the develop-
ment team is now going to work on, and which parts will be left until later.
SADAAM appreciates that finding a suitable subset of behaviours is not triv-
ial. As a result, the approach SADAAM applies is much less restrictive, and
includes techniques that facilitate flexible modeling and deliverables, and fre-
quent reviews coupled with team meetings that implement SADAAM Model
Storming Sessions (introduced in section 3.1). This approach enables devel-
opers to initiate model development at any point, and administer changes
to models at any given time.

3. Expand/Define Interaction Model. The Interaction Model (IM) defines
interactions that occur between agents whilst playing roles during a spe-
cific system behaviour. The IM consists of a set of Agent UML Protocol
Diagrams [19], that are associated with individual system behaviours (see
Figure 5a). A given system behaviour may have zero (if no communica-
tion occurs), one (typically), or multiple associated protocol diagram (if
the overall interaction cannot be represented in one diagram). Typically,
a protocol diagram includes the expected interactions underlying the be-

Item
Reorder Level

Reached

request,
quote(?item, ?amt)

Buyer Seller Warehouse Manager

Create Quotation

request,
availability(?item) Check Item

Availability

x
Generate Price

For Item

inform,
availability(?item, ?amt)

inform,
quote(?id, ?item, ?price) Record

Quotation

inform, unavailable(?item)
Destroy Quotation Set Item as

unavailable

inform,
unavailable(?item)

Identify Suppliers

Store
Quotation

Figure 4b. ActM Diagram

System Behaviour: Obtain Quote

Buyer Seller

request, quote(?item, ?amt)

AUML Protocol Diagram

Warehouse
Manager

request, checkStock (?item)

inform, available(?item, ?amt)

inform, unavailable(?item)

x
inform, unavailable(?item)

inform, quote(?id, ?item,
?price)

Figure 4a IM Diagram

Figure 5a IM Diagram

Figure 5b ActM Diagram

Fig. 5. Supply Chain Scenario IM and ActM: ObtainQuote.

haviour (normally the successful case); and all (known) variant interactions
(i.e. the unsuccessful cases). The example, shown in figure 5a, shows an in-
teraction scenario in which the Retailer.Buyer requests a quote from the
Supplier.Seller agent by sending a message e.g. request, quote(?item,

?amt). This agent, in turn carries out a stock check by sending a message
to the Supplier.WarehouseManager agent. Two variants ensue: if there is
sufficient stock, then the Seller generates and returns a quote to the Buyer,
otherwise, the Seller informs the buyer that the order cannot be met.

4. Expand on IM with Activity Model. The Activity Model (AM) iden-
tifies the set of activities carried out by agents in order to realise a given
system behaviour [16]. This model employs customised UML Activity di-
agrams, where: boxes represent individual activities; associations place an
ordering on the performance of the activities; and labelled swim lanes are
introduced to associate agents with activities. Associations between activi-
ties in different swim lanes is interpreted as interaction between the agents
(i.e. messages). Parallel activities can be represented via similar extensions
to those used for Interaction diagrams. Figure 5b presents the Activity dia-
gram for the Obtain Quote system behaviour. Here, the succesful completion
the behaviour requires the completion of a number of activities (e.g. Item
Reorder Level Reached, and Identify Suppliers, etc).

In summary, the Design phase builds on a number of agile techniques to pro-
vide an incremental, iterative design process, that supports customer involve-
ment, improves flexibility, and facilitates continuous analysis and feedback in
terms of behaviour, error and success. It provides the ability to adapt to chang-
ing situations and allows for the developer to learn and improve on the previous
release through continuous iteration and improvement of the design. It facilitates
prioritising of tasks and efficient allocation of resources (i.e. developers). Finally,
it can be seamlessly incorporated into any agent development framework.

3.2 Test-Driven Implementation

Designed to help manage and control agent development, the Test-Driven Imple-
mentation (TDI) phase employs agile techniques to support the creation, testing
and implementation of agents. For simplicity, the TDI phase is divided into 5
managable steps (see Figure 6) that can be implemented easily on a variety of
frameworks. The following description combines our worked example from Sup-
ply Chain Management, which is implemented using Agent Factory (AF)[15]6

At the centre of the TDI approach are the concepts of Test Agents and Ap-
plication Agents Under Test (AAUT). The Test Agent (TA) is an agent whose
implementation encodes a set of Test Cases that must be satisfied by the cor-
responding AAUT (the agent whose behaviour is under test). Each Test Case
represents a set of tests that are carried out on the AAUT in order to evaluate
whether it satisfies a given requirement. Specifically, these tests check that the
AAUT responds in an expected way as is specified by the corresponding aspects
of the Interaction Model. A Test Case may contain one or more agent tests.
It may require many test cases to establish that a requirement has been fully
satisfied.

Individual TAs are executed via a purpose-built test environment (Test Suite)
that provides an agile-perspective system architecture comprised of Test, Imple-
mentation, and Integration platforms (The TestSuite Application Structure is
illustrated in Figure 6). Test Platform handles the creation and validation of
TAs. The Implementation platform handles both the creation of application
agents, and the implementation of tests against those agents. The Integration
platform handles the integration of application agents for deployment in a MAS.
Dividing the TDI process in this way enables the developer to accurately manage
development and integration of tests and application code.

Agent Factory supports TestSuite through a combination of a purpose-built
TestSuite Platform Service together with a TestAgent Base Class that provides
support for coding TAs. Support is realised through a partial AFAPL agent pro-
gram (TestAgent) which provides a generic test agent implementation that can
be imported into the actual TAs. Specifically, it facilitates the addition of tests,
and the indication of the failure or passing of tests. Support for visualisation of
the debugging process is realised through the SADAAM Monitor - a Java-based
GUI that displays the current status of the test - allowing developers to monitor
and manage the progress of tests across platforms. It provides useful information
such as: agent identifiers, test identifiers, number of iterations completed, any
optional comments, and status of specific tests associated with the agent.

A key feature of SADAAM is the way in which our process utilises the TAs
as building blocks for the implementation of the application agents. This is
explained in more detail in step 2 below:

6 AF (http://www.agentfactory.com) is a cohesive framework that delivers structured
support for the implementation of intentional agents via the purpose-built Agent
Factory Agent Programming Language (AFAPL) [14]).

Create Test
Agent

Create AAUT

Implement Tests
and Run

Integrate &
Debug AAUT

Start the cycle
over

Test Platform

Implementation
Platform

Integration
Platform

Test APS

Implementation
APS

Integration APS

TDI Phase TestSuite Application
Structure

AF Agent Platform
Scripts

Fig. 6. How the TestSuite Application Structure facilitates TDI, and AF APS.

1. Create Test Agent (TA) The TDI process begins with the development
of Test Agents to support testing of the application agents. Creating a Test
Agent (TA) involves a number of steps. It commences with a review of the
Design phase to determine which AAUT’s to develop first. Our example
involves two agents: the TransportManager and Hauler. Next, the require-
ments for each TA are determined through the required Test Cases for each
given scenario. Each TA is given the same name as the agent it is replacing
(in the interaction scenario), but is prefixed by the word ”test”. In the ex-
ample, the TransportManager Agent informs the Hauler Agent of required
delivery. So, testing the Hauler Agent involves creating a testHauler TA that
implements the functionality of the Hauler Agent e.g. testHauler receives a
message e.g. inform, assignDelivery(?delID) and performs the appro-
priate test. Likewise, a testTransportManager Agent is created to test the
behaviour of the TransportManager Agent. The TAs are then developed
based on the determined requirements. The worked example is implemented
using AFAPL as follows:
(a) Each TA is created in AFAPL format. Specifically, all agents are created

with the .afapl2 file extension (e.g. testHauler.afapl2).
(b) Import TestAgent base class to provide necessary test methods.
(c) Include belief/commitment criteria along with overridden tests (as illus-

trated in the testHauler.afapl2 code snippet below).
Each TA is subsequently compiled to a .agent file (e.g. testHauler.agent),
and an AF platform configuration file (CFG) (e.g. sadaam.cfg) is then cre-
ated that includes relevant configuration information used by each agent
platform (e.g. TestSuite platform services and GUI). Next, a test deploy-
ment is specified via an Agent Platform Script file (aps). This file, conve-
niently named test.aps, stores details of the TAs. Specification involves
declaring the TA and its association with other (test) agents. In our ex-
ample, testHauler and testTransportManager agents are created and then

associated with each other, enabling interaction between the agents. Specif-
ically, the APS file specifies the creation of the TAs (e.g. CREATE AGENT

testHauler testHauler.agent), whilst the add belief statement
(ADD BELIEF testTransportManager ALWAYS(BELIEF((

testHauler, addresses(local:test.ucd.ie))))) links testTransportMan-
ager to testHauler (see test.aps code snippet below). This mapping of TAs to
one another allows for easy validation of TAs prior to implementation with
the AAUT. Validation verifies that the TAs are collaborating and functioning
correctly; underpinning our test-driven methodology through the realization
of a solid foundation to run tests, and allowing us to proceed with confidence
to the next step of the IDP. Finally, the test deployment is loaded onto a con-
figured agent platform and the TAs are executed. The outcome of individual
tests are monitored via the TestSuite GUI. To summarize, this section iden-
tified, created, and tested TAs ready for integration with applications agents.

testHauler.afapl2
IMPORT agent.TestAgent;

BELIEF(testSuite(testSuite));

COMMIT(?self, ?now, BELIEF(true),

SEQ(AWAIT(BELIEF(testSuiteSetUpCompleted)),

FOREACH (BELIEF(TransportManager(?name, ?addr)),

ATTEMPT (inform(agentID(?name, ?addr), documentID(0)),

passTest(testSuite, sendDocumentID),

failTest(testSuite, sendDocumentID)))));

test.aps
CREATE AGENT testHauler testHauler.agent

CREATE AGENT testTransportManager testTransportManager.agent

ADD BELIEF testTransportManager

ALWAYS(BELIEF((testHauler, addresses(local:test.ucd.ie))))

2. Create Application Agent under Test (AAUT) AAUTs represent
the entities that are responsible for deploying processes in the MAS. In
SADAAM, programming and registering an AAUT follows a ”framework
specific” approach. Thus creating an AAUT in AFAPL involves:
(a) Review Design phase to determine application agent requirement: e.g.

this example requires: TransportManager and Hauler agents.
(b) Update Implementation APS file: AAUTs are created and registered in

an Implementation APS file conveniently named implementation.aps.
(c) Associate AAUT with TA and integrate: The implementation.aps file

associates each AAUT with its relevant TA for testing (e.g. associate
testHauler with Hauler); and it stores details of both AAUTs and TAs.

3. Implement tests on Application Agent(s). This step tests the AAUT
prior to implementation into MAS, and involves:
(a) Implementing tests to establish whether the AAUT is running correctly,

or if some debugging is required. The TestSuite GUI displays both the

AAUTs and TAs along with the status of tests that reside within them
(indicated in the Status column).

(b) Review, Refactor and start the cycle over. A review of the code my reveal
potential refactoring, and or a need to further improve the model. At this
point the developer may choose to start the cycle over or move forward
to the next step: Integrate and Debug Application Agents.

4. Integrate and Debug Application Agent(s). Integration and debugging
of Application Agent(s) for deployment into the MAS involves:
(a) Create/Revise Integration APS file: Tested Application Agents are regis-

tered (ready for MAS deployment) in an Integration file integration.aps.
(b) Integrate application agents ready for deployment: Integration is achieved

using standard AFAPL similar to that for APS files described above.
(c) Run Integration tests (as necessary): This should establish whether the

application is running correctly, or if some further debugging is required.
5. Review, Refactor, and Start the cycle over. Review, Refactor and

Start the cycle over as necessary. A review of the code my reveal potential
refactoring, and or a need to further improve the model. At this point the
developer may choose to start the cycle over or move forward to the next
phase of the TDI: Release and Review.

3.3 Definition and Structure of the SADAAM Test Agent

Within SADAAM, tests can be derived directly from Interaction Models7, and
formally defined using a Test Definition Model (TDM). When writing a test we
are looking to check that the application code is functioning correctly, and this
test definition forms an important part of the development process. Currently,
TAs focus on communication scenarios (the sending and receiving of messages),
and these models help formally define tests that facilitate expected and unex-
pected behaviour. Typically, a TDM will define a successful case (i.e. expected

7 SADAAM is currently working on automating this process; and has already suc-
cessfully derived TAs from Agent-UML Protocol Diagrams based on earlier work
[24].

Test Agent

Application
Code

• Agent_Code
• Agent_Code
• Agent_Code

Test Case(s)

• Agent_Test
• Agent_Test
• Agent_Test

Application Agent

Application Agent

Application Agent
Test Agent

Application
Agent

MAS

send/receive(Message)

send/receive(Message)

Application Agent

Test Agent

Fig. 7. SADAAM Application Agent Testing.

interactions underlying the behaviour); and it will also include a set of unsuc-
cessful cases (to test various alternative scenarios representing occurrence that
deviate from the expected scenario). Results of these test definitions are formally
defined in the TestSuite.

Figure 7 illustrates the structure of a typical SADAAM Test Agent. Each
TA includes one or more test-cases associated with the AAUT. Each test-case
may contain one or more tests, and may facilitate numerous scenarios (expected
and alternative). Tests may be deployed to evaluate communication between 2
or more agents 8, facilitating the testing of messages sent and received. Each
TA allows an AAUT to be tested while communicating with multiple agents
simultaneously. Each TA also contains application code that forms the initial
building blocks of the deployable Application Agent.

This structure serves three main purposes. Firstly, it allows the developer to
validate the TA. Secondly, it determines that the AAUT is functioning correctly
prior to deployment in a MAS. Thirdly, it provides the building blocks for an
initial implementation of the deployable Application Agent (each TA represents
an initial implementation of the AAUT). This approach is a direct improvement
on other approaches because it allows code to be reused for the development of
application agents, thus driving the development 9. Additionally, each TA can
hold any number of test-cases, representing a variety of scenarios and agent tests.
Furthermore, agents can be tested in isolation or as part of a MAS; and tests are
neatly packaged because a TA houses all the tests relating to the specific AAUT.
In summary, the SADAAM TA improves flexibility and is more productive be-
cause it allows TA code to be reused not only for subsequent development, and
maintenance; but more importantly, for development of deployable agents.

3.4 Release and Review

This phase involves delivering working code to the customer for review. Its main
purpose is to release the application in a live environment, and ultimately provide
closure to the project. During this phase, the customer is given an opportunity
to test and review each new piece of working software to determine whether it
meets their requirements, before it is signed off as complete. This process may
highlight required enhancements, potential refactoring, and / or a need to further
improve the application; and is a continuous process that is maintained until
the application fulfils the customers requirements. Advantages of this approach
include an improvement in flexibility and efficiency, and increased responsiveness
to changes in requirements. Upon completion of the Implementation Phase, a
release is created. Releases may be internal, for development purposes only, or
external, for evaluation by the client.

1. Release: To create a release, all references to the test suites are removed
from the agent code; and an initial deployment is created, possibly spanning N
agent platforms. 2. Review: Finally, a comprehensive review is carried out after
each release.
8 A TA can be run against one or more: AAUT, TAs, or a combination of the two.
9 SADAAM is currently working on automating this process.

3.5 Refactoring and Enhancement

Refactoring and Enhancement is not strictly a phase; instead it represents a
continuous process that involves applying improvements and enhancements to
the finished code. Typically, refactoring entails applying changes to the internal
structure of the application software to make it more efficient and easier to com-
prehend, without altering the external behaviour. This process may necessitate:
removal of duplicated code; the simplification of complex logic; and clarifying of
ambiguous code. This continuous analysis of code helps enhance the design and
implementation of the application (refactoring in small steps helps prevent the
introduction of defects). Enhancements include new or improved functionality
that may further improve the application.

This process, along with the review, highlights outstanding issues and moti-
vates any required enhancements to the process.

4 Conclusions

Primarily, SADAAM presents an agile methodology for the development of
agents into multi-agent systems. In particular, by linking AOSE practices (e.g.
[8] [21] [29]) to techniques derived from a variety of agile development meth-
ods (see for example [1]), it is possible to combine the benefits of the most
useful and established techniques from both fields; thereby promoting the iter-
ative, incremental, testing and development of agent-based systems; and inject-
ing flexibility into the development cycle. This approach significantly increases
productivity and reduces time to benefits while facilitating adaptive, empirical
systems development. Other potential competitive advantages of this approach
include: stronger and more efficient mechanisms delivered through intelligent
processes, and reductions in development time and costs, especially in dynamic
environments.

This paper demonstrated how SADAAM can be employed to develop, test
and implement an agent-based application; and included an evaluation based on
a simplified Supply Chain scenario consisting of a Seller, Retailer and Haulage
Firm.

SADAAM’s approach to agent development focuses on delivery of working
code rather than documentation and detailed upfront design, and systematically
guides and supports developers through the various stages of system develop-
ment. SADAAM provides a number of contributions. In particular, it improves
on other approaches because SADAAM Test Agents consists of a real implemen-
tation of the AAUT. Importantly, these Test Agents form the initial building
blocks of the deployable application agent, and TA code is re-used for application
agent development, promoting code-reuse. This approach is much more econom-
ical, it improves flexibility, and is more productive, because it allows test agent
code to be reused not only for subsequent development, and maintenance; but
more importantly, for development of deployable application agents. Secondly,
Test Agents are able to communicate with one or many Application Agents and /

or other Test Agents (Conversely, Mock Agents communicate with just one agent,
the AUT), allowing for an agent to perform multiple roles; and multiple agents
can be tested simultaneously. Thirdly, increased flexibility facilitates a better
allocation of resources, and therefore requires less initial investment. Further-
more, supporting development of highest-priority requirements first, with early
delivery of quality-valued working software, is much more efficient than the se-
rial approach (where the entire system is often developed upfront), and provides
a better rate of return on investment. Use of these simple tools and modelling
techniques is intuitive because you are creating a common understanding of the
requirements and enabling the agile modelling practice to be performed by any
number of developers. Additionally, this approach allows the development team
to be assigned to specific tasks depending on a variety of criteria including: time
scale, skills, or the priority of requirements. Flexible allocation of resources pro-
vides greater control over developing whatever is required in the time allocated
to build; this level of control maximises developer investment because it allows
the development team to retain control over how they invest their time and ef-
fort, and allows for the most efficient use of their resources. Thus, SADAAM
allows you to develop software that is both high quality and high-value.

Finally, SADAAM is an agile methodology that supports the development
and deployment of agent-oriented applications. It fulfills the requirement for an
easy-to-use methodology that provides the more rapid development and imple-
mentation of agents into agent based systems; it advocates minimal documen-
tation; provides a cohesive repertoire of interoperable techniques that support
agile development; and provides a flexible methodology that improves efficiency
and time to market.

References

1. Agile Alliance., ”What is Agile Software Development?”, web:
http://www.agilealliance.org/

2. AGILE Manifesto available at http://agilemanifesto.org
3. Ambler, S., ”Agile Modeling: The Official Agile Modelling (AM) Site.” Agile Mod-

elling Home Page: http://www.agilemodeling.com/
4. Amor, M., Fuentes, L. and Vallecillo, A., ”Bridging the Gap between AO Design

and Implementation Using MDA” , AOSE 2004. LNCS 3382, pp 93-108.
5. Bauer, B., Mueller, J., and Odell, J., ”Agent UML: A Formalisation for Specifying

Multi-Agent Software Systems.”, In P. Ciancarini and M. Wooldridge, ed, 1st Int.
Workshop on Agent-Oriented Software Eng. (AOSE-2000), Limerick, Eire, 2000.

6. Beck, K., ”Extreme Programming Explained: Embrace Change.”, AW Pub. 1999.
7. Beck, K., ”Test-Driven Development by Example.”, Addison Wesley, 2003.
8. Bergenti, F. and Poggi, A., ”Exploiting UML in the design of Multi-Agent Sys-

tems.”, In Proc. of the ECOOP Workshop on Engineering Societies in the Agents’
World 2000 (ESAW’00), pages 96-103, 2000.

9. Boehm, B. and Turner, R., ”Balancing Agility and Discipline: A Guide for the
Perplexed.”, Boston, MA: Addison-Wesley, 2004, ISBN 0-321-18612-5, pp 165-194.

10. Bresciani, P., Giorgini, P., Giunchiglia, F. Mylopoulos, J. and Perini, A., ”TRO-
POS: An Agent-Oriented Software Development Methodology.”, JAAMAS, 2003.

11. Cernuzzi, L., Cossentino, M., Zambonelli, F., Process Models for Agent-based De-
velopment, Journal. Eng. Applications of AI, 18(2), 2005.

12. Chella, A. Cossentino, M., Sabatucci, L., and Seidita, V., ”Agile PASSI: An Agile
Process for Designing Agents”, International Journal of Computer Science and
Eng. Special Issue on ”Software Eng. for Multi-Agent Systems”, May 2006

13. Coelho, R., Kulesza, U., von Staa, A., and Lucena, C., ”Unit testing in multi-
agent systems using mock agents and aspects, Procs of the 2006 Int. workshop on
Software engineering for large-scale multi-agent systems, Shanghai, China

14. Collier, R. W. ”Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications.”, PhD thesis, Dept. of Computer Science, UCD, Dublin, 2002.

15. Collier, R.W., O’Hare, G.M.P., Lowen, T.D. and Rooney, C.F.B., ”Beyond Proto-
typing in the Factory of Agents.”, 3rd Int. Central and Eastern European Conf.
on Multi-Agent Systems, CEEMAS 2003, Prague, Czech Republic, 16-18th June,
Lecture Notes in Computer Science (LNCS), Springer Verlag, 2003.

16. Collier, R. W., Rooney, C. and O’Hare, G. M. P., ”A UML-based Software En-
gineering Methodology for Agent Factory.”, Proceeding of the 16th International
Conference on Software Engineering and Knowledge Engineering (SEKE-2004),
Banff, Alberta, Canada, 20-25th June, 2004.

17. Fowler, M., ”Refactoring: Improving the Design of Existing Code.”, Addison Wes-
ley Longman, 1999.

18. P. Giorgini, eds, ”Agent-Oriented Methodologies”, IdeaGroup, B. Henderson-
Sellers 2005.

19. Huget, M-P, Bauer, B., Odell, J., Levy, R., Turci, P., Cervenka, R., Zhu, Hong,
Interaction Diagram Specification, FIPA AUML Website, http://www.auml.org

20. Iglesias, C., Garijo, M., Gonzalez, J., Velasco, J., ”Analysis and Design of Multi-
Agent Systems using MAS-CommonKADS.”, Springer,LNCS 1365, p489, 2004

21. Jennings, N.R., ”Building Complex Software Systems: The Case for an Agent-
Oriented Approach.”, Communications of the ACM, 2001.

22. Jennings, N.R. and Wooldridge, M.; ”Agent-Oriented Software Engineering.” in
Handbook of Agent Technology, (ed. J. Bradshaw), AAAI/MIT Press, 2000.

23. Knublauch, H., Koeth, H, and Rose, T., ”Agile Development of a Multi-Agent
System: An Extreme Programming Case Study.”, Appears in: Proc of the 3rd
Int. Conf. On Extreme Programming and Agile Processes in Software Engineer-
ing (XP2002), Alghero, Sardinia, Italy.

24. Rooney, C F.B., Collier, R.W., O’Hare, G.P., ”VIPER: VIsual Protocol EditoR”, in
6th Int. Conf. on Coordination Languages and Models (Coordination 2004), Pisa,
February 24-27, 2004.

25. Schwaber, K., and Beedle, M., ”Agile Software Development with Scrum.”, Pren-
tice Hall, 2001.

26. Sommerville, I., ”Software Engineering.”, Addison-Wesley 6th Ed., 2000.
27. Tveit, A., ”A survey of Agent-Oriented Software Engineering.” In Proceedings of

the First NTNU Computer Science Graduate Student Conference, Norwegian Uni-
versity of Science and Technology, May 2001.

28. Wood, M.F. and DeLoach, S.A., ”An Overview of Multi-Agent Systems Engineer-
ing Methodology.” AOSE-2000, 1st Int. Workshop on AOSE, Limerick, Eire, 2000.

29. Zambonelli, F., Jennings, N.R., Omicini, A., and Wooldridge, M., ”Coordination of
Internet Agents: Models, Technologies and Applications”, Agent-Oriented Software
Engineering for Internet Applications, Springer-verlag, 2000

